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Maximum Likelihood Convolutional Decoding, which is used by the Deep Space
Network for short constraint-length convolutional codes, assumes that all strings of
information bits are equally likely. In some cases, like image data, this is not the case. We
examine the use of information about an adjacent pixel in decoding convolutionally
encoded Voyager images, and discover that, in a region of interest, as much as 2 dB may

be gained.

From the standpoint of digital data, the coding system for
Voyager (and an international coding standard) consists of a
Reed-Solomon encoder (optional), a convolutional encoder, a
noisy channel, a maximum likelihood convolutional decoder
(Viterbi decoder), and, if necessary, a Reed-Solomon decoder
(see Fig.1). With bit signal-to-noise ratio (SNR) as low as
2.3 dB, the concatenated scheme produces a bit error rate of
105, and the convolutionally coded only scheme produces a
bit error rate of 3 X 1073, while an uncoded scheme produces
a bit error rate of 3 X 1072 at this signal-to-noise ratio.

The Viterbi decoder finds the codeword which is closest to
the received string. This is called maximum likelihood decod-
ing because, under the assumption that all codewords are
a priori equally likely to be transmitted, this decoding scheme
retrieves the most likely sent codeword. In some cases, though,
codewords are not all equally likely to be transmitted. In
Voyager images, for example, pixel to pixel variations are not
completely random: They are much more likely to be small
than large. In this case, a decoder which makes use of the
source statistics should perform better than a Viterbi decoder.
(Image compression uses these statistics to lower the transmis-
sion rate and thus raise symbol SNR, but some Voyager
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images are sent uncompressed because of spacecraft limita-
tions; also, an alternative would be valuable in the unlikely
event of a data compressor failure before Neptune encounter
in 1989.)

In Ref. 1, Korwar investigates the use of source statistics
in convolutional decoding hard-quantized images, i.e., images
in which each pixel is represented by one bit. Using hypo-
thetical data, she found that using source statistics makes
substantial improvement in decoder performance. Our work is
different in two ways: We use 8-bit quantized pixels and real
Voyager imaging data. Using 8-bit quantized pixels requires
a byte-oriented rather than a bit-oriented decoder, which is
more complicated and runs much more slowly.

We obtained a tape of image data from Voyager project.
It consisted of several pictures, each 800 by 800 8-bit quan-
tized pixels. A Clanguage program was written on a VAX
running UNIX to extract the frequency of various absolute
differences in value between adjacent pixels. That is, thinking
of each pixel as an integer X.between 0 and 255, the values of
|X; = X;_, | were tabulated. We were not surprised to discover
that small values for this difference were much more common




than would be expected in random (independent) data (see
Fig. 3).

With the frequencies of |X; - X;_ | obtained from one
picture, a new decoder based on thse statistics was written,
again using the UNIX VAX (see Appendix A for the algo-
rithm). Another picture was then convolutionally encoded,
Gaussian noise was added, and the picture was decoded with
the new decoder. The performance of this decoder on this
picture is shown in Figs. 4 and 5. These figures show that
performance improves substantially for signal-to-noise ratios
below 2.0 dB. This is a region of interest for images which
have been Reed-Solomon encoded. (Byte error rates are shown
in Fig. 5 because this is of interest for data which is Reed-
Solomon encoded.)

The curves show that our decoder does not perform as well
as a conventional Viterbi decoder for signal-to-noise ratios
much above 2.0 dB. At least part of this can be attributed to
the edges of pictures, which our tape shows as dark on one
edge and white on the other. These strips may be the result of

data compression, in which case they would not occur in
images being sent uncompressed (the only kind of images for
which the new decoder is useful). Our lower performance may
also be partly a result of “rizzomarks” which are added for
calibration and whose effects could be discounted in a scheme
like ours.

We have not yet examined other possible schemes, such as
considering both the pixel to the left of the current pixel
(which the new decoder uses) and the pixel above it. Such a
slightly more complicated scheme may slightly improve perfor-
mance at the cost of slightly slower decoding. Using a software
decoder on a VAX 750, decoding is very slow (640,000 bytes/
month); if our scheme were to be used for real transmitted
data, we would need big gains from hardware and algorithm
improvements.

During Voyager’s Uranus encounter, some undecoded chan-
nel symbols may be saved for the symbol stream combining
experiment. We hope to use these to test our decoder under
“real life”” conditions.
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Fig. 1. Digital data coding scheme
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Fig. 2. An illustration of the difference in complexity of a byte-
oriented decoder vs a bit-oriented decoder for 3-bit bytes and a
constraint length 3 code
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Fig. 3. A graph of the observed frequency of different values of | X~ X)_4 | for several Voyager
images compared with the predicted frequency assuming independence (randomness) between
adjacent pixels
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Fig. 4. A graph of bit error rates for the conventional (old) and the
modified (new) maximum likelihood decoder
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Fig. 5. A graph of byte error rates for the conventional (old) and the
modified (new) maximum likelihood decoder
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Appendix

We assume that symbols £1 are transmitted over an inde-
pendent Gaussian channel. That is, if C=(¢;, ¢y, - ,0¢,,) is
transmitted, then R = (r,r,,- - ,¥, ) is received with prob-
ability density

I_I exp [*—(Vi - 01)2/202]

1
PRIC) = —
(ov2m)™ =

(A-1)

where 02 = 1/[2(E,/N,)] and E /N, is the symbol signal-
to-noise ratio,

When a stream R is received, we wish to determine which
was the most likely sent codeword C, or equivalently, which
bit stream X = (x,,x,, - - -, X;) was encoded to C, which was
then transmitted (2% = m in the case of our rate 1/2 convolu-
tional code). We want to maximize P(C|R) over all possible
codewords C.

P(R|C)P(C)

P(CIR) = PR)

(A-2)

so if all codewords are equally likely, we may equivalently
maximize P(R|C) over C. This in turn is the same as minimiz-
ing

2 (n=c) (A3)
i=1

since nothing else depends on C.

Current decoders use Viterbi’s algorithm, which finds the
string which minimizes Eq. (3) without searching every possi-
ble codeword.

If it is not the case that all codewords are equally likely,
the analysis above is only valid through Eq. (2). Instead, when
we maximize P(C|R), we must maximize

LT exol-0;- 1202 PCC)
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which is the same as minimizing

m

D (=) - 20" log (P(C))

=1

(A-5)

since nothing else depends on C.

As the signal-to-noise ratio decreases, o> increases (for
fixed signal energy), so the choice of model for the prob-
abilities of various codewords (“‘source statistics”) becomes
more important.

We wish to add as little complexity as possible to the
Viterbi algorithm, so we would like to assume that the source
is Markov, meaning the probability distribution of x, given x,,
Xyttt Xy really only depends on x;_,, - -+, x;_, for some
small ». Unfortunately, since each pixel is represented by one
8-bit byte, the natural statistics (of one bit to the next) are not
even stationary, so we are forced to do all computations one
byte at a time instead of one bit at a time. We have modeled
the source statistics as byte-by-byte Markov; that is, if bytes
are labeled X, with X; =xg; 1y, "+, Xg;, we have modeled

2
PX) = P(X,. X,,- -, Xy) = P(X;) n PX,\X, )
i=2
(A-6)

In addition, we have modeled P(X;|X, ) as a function of
the absolute differences in grey level (pixel value).

Each step of our convolutional decoder decodes one byte
or pixel, and the process minimizes

=11 7=1

2 8
E [Z (rB(i-l)+j - cg(i_1)+j)2 -2¢? log (P(Xi'Xi-l )):l
(A7)

where we assume P(Xi |X,_, ) is actually distributed as modeled
above.




